Search results for "Autologous cell"

showing 2 items of 2 documents

The European regulatory environment of rna-based vaccines

2016

A variety of different mRNA-based drugs are currently in development. This became possible, since major breakthroughs in RNA research during the last decades allowed impressive improvements of translation, stability and delivery of mRNA. This article focuses on antigen-encoding RNA-based vaccines that are either directed against tumors or pathogens. mRNA-encoded vaccines are developed both for preventive or therapeutic purposes. Most mRNA-based vaccines are directly administered to patients. Alternatively, primary autologous cells from cancer patients are modified ex vivo by the use of mRNA and then are adoptively transferred to patients. In the EU no regulatory guidelines presently exist t…

0301 basic medicineAutologous cellMessenger RNAVaccinesAnticancer vaccinationGenetically modified medicinal productsbusiness.industryGenetic enhancementmRNARNAGenetic therapy03 medical and health sciences030104 developmental biology0302 clinical medicineAntigenPreventive and therapeutic approachesInfectious disease (medical specialty)030220 oncology & carcinogenesisAdvanced therapy medicinal products (ATMP)ImmunologyMedicineVaccination against infectious diseasebusinessRegulatory framework in the EUEx vivo
researchProduct

Using Polymeric Scaffolds for Vascular Tissue Engineering

2014

With the high occurrence of cardiovascular disease and increasing numbers of patients requiring vascular access, there is a significant need for small-diameter (<6 mm inner diameter) vascular graft that can provide long-term patency. Despite the technological improvements, restenosis and graft thrombosis continue to hamper the success of the implants. Vascular tissue engineering is a new field that has undergone enormous growth over the last decade and has proposed valid solutions for blood vessels repair. The goal of vascular tissue engineering is to produce neovessels and neoorgan tissue from autologous cells using a biodegradable polymer as a scaffold. The most important advantage of …

ScaffoldAutologous cellPolymers and PlasticsSettore BIO/16 - Anatomia Umanabusiness.industryVascular accessmedicine.diseaselcsh:Chemical technologySettore MED/18 - Chirurgia GeneralePOLYMERIC SCAFFOLDS VASCULAR TISSUE ENGINEERING VASCULAR GRAFTSRestenosisTissue engineeringSettore BIO/13 - Biologia ApplicatamedicineVascular tissue engineeringInner diameterlcsh:TP1-1185businessVascular graftBiomedical engineeringInternational Journal of Polymer Science
researchProduct